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SASI What and why?

What is the SASI?

Standing Accretion Shock Instability [2]

After stellar core bounce, shock stalls,
still accreting matter

Accretion shock unstable to non-radial
perturbations

In 2D, instability dominated by ℓ = 1
mode in Legendre decomposition
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SASI What and why?

Why should you care?

Impacts

Assists shock revival

Impacts explosion morphology

Impacts neutrino emission

Produces gravitational waves

How does GR affect SASI?

We perform a parameter study:
vary mass of PNS,
M/M⊙ ∈ {1.4, 2.0, 2.8}, and
initial shock radius,
Rs/km ∈ {120, 150, 180} Figure: Spectrogram from simulation of

non-rotating 15M⊙ progenitor [3].
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Our Study Setup

thornado

toolkit for high-order neutrino radiation hydrodynamics

Publicly available on GitHub: https://www.github.com/endeve/thornado

Solves (GR)HD equations with dynamic spacetimes

Solves GR neutrino moment equations (under testing)

Uses extended conformally-flat condition of GR

Uses Runge–Kutta discontinuous Galerkin methods

We compare results of the SASI using Newtonian and general relativistic
treatments
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Our Study Setup

Initial Conditions

Stationary metric:

ds2 = −α2 (r) dt2 +ψ4 (r) γij dx
i dxj

Spherical PNS of radius 40 km

Outer boundary of 360 km

Polytropic process: p = K ρ4/3

K fixed above and below shock

Solve steady state hydro equations:
1√
γ ∂r

[
α
√
γ F (U)

]
= αS (U)

Figure: Initial conditions for model
GR M1.4 Rs120.
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Our Study Setup

Initial Conditions

Evolve in 1D to remove transients

Map steady solution to 2D

Slightly perturb post-shock pressure:

∆p (r, θ) = 10−6 p (rc) e
−(r−rc)

2

2σ2 cos θ

Evolve just until non-linear phase is
reached (∼ 300ms)

Extract characteristics of SASI in linear
regime (growth rate and oscillation period) Figure: Pressure perturbation to initiate

SASI.
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Our Study Setup

Legendre Decomposition

A (t, r, θ) := 1
sin θ ∂θ

(
vθ (t, r, θ) sin θ

)
[5]

Compute Legendre decomposition [1]

Gℓ (t, r) :=
1
2

∫ π
0 A (t, r, θ) Pℓ (cos θ) sin θ dθ

and power Bℓ (t) :=
0.9Rs∫
0.8Rs

[Gℓ (t, r)]
2 r2 dr

Fit B1 (t) with least-squares to

F (t) := F1 e
2ωr t sin2 (ωi t+ δ) [1]

Growth rate: ωr = 1/ (2 τ)

Oscillation frequency: ωi = 2π/T

Figure: Top panel: deviation of shock
radius from spherical symmetry. Bottom
panel: blue line: B1 (t), orange line: F (t).
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Our Study Results

Results: Oscillation Period

Estimate from Müller (2020) [4]:

TSASI ≈ τad+τac =
Rs∫

RPNS

dr
|vr| +

Rs∫
RPNS

dr
cs−|vr|

Good agreement between Newtonian and
GR (better than 2%)

Both agree well with estimate (within
20%)
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Our Study Results

Results: Growth Rate

SASI power in the ℓ = 1 mode
increases faster with Newtonian
treatment
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Conclusions

Conclusions

Summary

Within our range of parameters,

Newtonian and GR treatments give comparable oscillation periods and agree with
estimate
GR treatment predicts slower growth rates than Newtonian treatment

Future Work

Further analysis to understand differences in growth rate

Vary accretion rate

Perform study in 3D
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Conclusions
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