A Comparison of the SASI under Newtonian and General Relativistic Conditions APS, April 2022

Samuel J. Dunham 1.2 Eirik Endeve 2.3 Anthony Mezzacappa 3 John M. Blondin ⁴ Jesse L. Buffaloe ³ Kelly Holley-Bockelmann ^{1,5}

 1 Vanderbilt University 2 Oak Ridge National Laboratory 3 University of Tennessee, Knoxville ⁴North Carolina State University ⁵Fisk University

April 12, 2022 This work is supported in part by: NSF PHY 1806692 NSF PHY 2110177

重

 299

メロメ メタメ メミメ メミメ

[SASI](#page-1-0) [What and why?](#page-1-0)

What is the SASI?

Standing Accretion Shock Instability [\[2\]](#page-10-0)

- After stellar core bounce, shock stalls, still accreting matter
- **•** Accretion shock unstable to non-radial perturbations
- In 2D, instability dominated by $\ell = 1$ mode in Legendre decomposition

[SASI](#page-1-0) [What and why?](#page-1-0)

Why should you care?

Impacts

- **•** Assists shock revival
- Impacts explosion morphology
- Impacts neutrino emission
- **•** Produces gravitational waves

How does GR affect SASI?

• We perform a parameter study: vary mass of PNS, $M/M_{\odot} \in \{1.4, 2.0, 2.8\}$, and initial shock radius, $R_s/\text{km} \in \{120, 150, 180\}$

Figure: Spectrogram from simulation of non-rotating $15 M_{\odot}$ progenitor [\[3\]](#page-10-1).

[Our Study](#page-3-0) [Setup](#page-3-0) Setup Setup

thornado

toolkit for high-order neutrino radiation hydrodynamics

- Publicly available on GitHub: <https://www.github.com/endeve/thornado>
- Solves (GR)HD equations with dynamic spacetimes
- Solves GR neutrino moment equations (under testing)
- Uses extended conformally-flat condition of GR
- Uses Runge–Kutta discontinuous Galerkin methods
- We compare results of the SASI using Newtonian and general relativistic treatments

 Ω

Initial Conditions

• Stationary metric:

 $ds^{2} = -\alpha^{2} (r) dt^{2} + \psi^{4} (r) \overline{\gamma}_{ij} dx^{i} dx^{j}$

[Our Study](#page-3-0) [Setup](#page-3-0), Setup, Se

- Spherical PNS of radius 40 km
- Outer boundary of 360 km
- Polytropic process: $p = K \rho^{4/3}$
- \bullet K fixed above and below shock
- Solve steady state hydro equations: $\frac{1}{\sqrt{2}}$ $\frac{1}{\overline{\gamma}}\,\partial_r\left[\alpha\,\sqrt{\gamma}\,\boldsymbol{F}\left(\boldsymbol{U}\right)\right]=\alpha\,\boldsymbol{S}\left(\boldsymbol{U}\right)$

Figure: Initial conditions for model GR M1.4 Rs120.

[Our Study](#page-3-0) [Setup](#page-3-0) Setup Setup

Initial Conditions

- Evolve in 1D to remove transients
- Map steady solution to 2D
- Slightly perturb post-shock pressure: $\Delta p\left(r,\theta\right)=10^{-6}\,p\left(r_c\right)\,e^{\frac{-\left(r-r_c\right)^2}{2\,\sigma^2}}\cos\theta$
- Evolve just until non-linear phase is reached ($\sim 300 \,\mathrm{ms}$)
- **•** Extract characteristics of SASI in linear regime (growth rate and oscillation period) Figure: Pressure perturbation to initiate

SASI.

[SASI: NR vs. GR](#page-0-0) 6 / 11

[Our Study](#page-3-0) [Setup](#page-3-0), Setup, Se

Legendre Decomposition

•
$$
A(t, r, \theta) := \frac{1}{\sin \theta} \partial_{\theta} (v^{\theta}(t, r, \theta) \sin \theta)
$$
 [5]

- Compute Legendre decomposition [\[1\]](#page-10-3) $G_{\ell}(t,r) := \frac{1}{2} \int_0^{\pi} A(t,r,\theta) P_{\ell}(\cos \theta) \sin \theta d\theta$ and power $B_\ell \left(t \right) := \int^\infty \left[G_\ell \left(t, r \right) \right]^2 r^2 \, dr$ $0.9\,R_s$ $0.8 R_s$
- Fit $B_1(t)$ with least-squares to $F(t) := F_1 e^{2\omega_r t} \sin^2(\omega_i t + \delta)$ [\[1\]](#page-10-3)
- Growth rate: $\omega_r = 1/(2 \tau)$
- Oscillation frequency: $\omega_i = 2\pi/T$

Figure: Top panel: deviation of shock radius from spherical symmetry. Bottom panel: blue line: $B_1(t)$, orange line: $F(t)$.

イロト イ押ト イヨト イヨト

∍

Results: Oscillation Period

• Estimate from Müller (2020) [\[4\]](#page-10-4):

$$
T_{\text{SASI}} \approx \tau_{\text{ad}} + \tau_{\text{ac}} = \int_{R_{\text{PNS}}}^{R_s} \frac{dr}{|v^r|} + \int_{R_{\text{PNS}}}^{R_s} \frac{dr}{c_s - |v^r|}
$$

[Our Study](#page-3-0) **[Results](#page-7-0) Results**

• Good agreement between Newtonian and GR (better than 2%)

• Both agree well with estimate (within 20%)

←□

 290

∍

[Our Study](#page-3-0) **[Results](#page-7-0) Results**

Results: Growth Rate

• SASI power in the $\ell = 1$ mode increases faster with Newtonian treatment

Conclusions

Summary

- Within our range of parameters,
	- Newtonian and GR treatments give comparable oscillation periods and agree with estimate
	- GR treatment predicts slower growth rates than Newtonian treatment

Future Work

- Further analysis to understand differences in growth rate
- Vary accretion rate
- Perform study in 3D

[Conclusions](#page-10-5)

Bibliography

- [1] John M. Blondin and Anthony Mezzacappa. The Spherical Accretion Shock Instability in the Linear Regime. ApJ, 642(1):401–409, May 2006.
- [2] John M. Blondin, Anthony Mezzacappa, and Christine DeMarino. Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae. ApJ, 584(2):971–980, February 2003.
- [3] Takami Kuroda, Kei Kotake, and Tomoya Takiwaki. A New Gravitational-wave Signature from Standing Accretion Shock Instability in Supernovae. ApJ, 829(1):L14, September 2016.
- [4] Bernhard Müller. Hydrodynamics of core-collapse supernovae and their progenitors. Living Reviews in Computational Astrophysics, 6(1):3, June 2020.
- [5] L. Scheck, H. Th. Janka, T. Foglizzo, and K. Kifonidis. Multidimensional supernova simulations with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the supernova core. $A&A$, 477(3):931–952, January 2008.