A Discontinuous Galerkin Method for GR-Hydrodynamics in thornado

Samuel J. Dunham^{1,2}, Eirik Endeve^{3,2}, Anthony Mezzacappa^{2,4}, Jesse Buffaloe²

¹Vanderbilt University

²University of Tennessee-Knoxville

³Oak Ridge National Laboratory

⁴Joint Institute for Computational Sciences

Outline

Motivation/Background Numerical Method Results Summary/Future Work

Outline

Motivation/Background

Numerical Method Results Summary/Future Work

Motivation: Core-Collapse Supernovae

- Explosion mechanism
- Metal distribution
- Gravitational waves
- Neutrinos
- Nuclear matter

Cas A, color-coded by chemical composition. Figure courtesy of APOD

What Are We Doing?

- Developing new code to study CCSNe: toolkit for high-order neutrino-radiation hydrodynamics (thornado)
- 3+1 (CFA)
 - Hydrodynamics
 - Neutrino Transport
 - Gravity

• Runge-Kutta Discontinuous Galerkin (RKDG) $\partial_t (\sqrt{\gamma} U) + \partial_i (\alpha \sqrt{\gamma} F^i (U)) = \sqrt{\gamma} S$

3+1 GR-Hydro Equations $\partial_t \left(\sqrt{\gamma} \mathbf{U} \right) + \partial_i \left(\alpha \sqrt{\gamma} \mathbf{F}^i \left(\mathbf{U} \right) \right) = \sqrt{\gamma} \mathbf{S}$

$$\frac{\partial}{\partial t} \begin{pmatrix} \sqrt{\gamma} D \\ \sqrt{\gamma} S_j \\ \sqrt{\gamma} \tau \end{pmatrix} + \frac{\partial}{\partial x^i} \begin{pmatrix} \alpha \sqrt{\gamma} \left(v^i - \alpha^{-1} \beta^i \right) D \\ \alpha \sqrt{\gamma} \left(P^i_{\ j} - \alpha^{-1} \beta^i S_j \right) \\ \alpha \sqrt{\gamma} \left(S^i - D v^i - \alpha^{-1} \beta^i \tau \right) \end{pmatrix} \\
= \sqrt{\gamma} \begin{pmatrix} 0 \\ \frac{1}{2} \alpha P^{ik} \partial_j \gamma_{ik} + S_i \partial_j \beta^i - (\tau + D) \partial_j \alpha \\ \alpha P^{ij} K_{ij} - S^j \partial_j \alpha \end{pmatrix}$$

Evolved Quantities

D: Conserved rest-mass density \boldsymbol{S} : Conserved momentum-density τ : Conserved energy-density

Geometry

- γ : Determinant of spatial three-metric
- α : Lapse function
- $\boldsymbol{\beta}$: Shift vector
- \boldsymbol{K} : Extrinsic curvature tensor

Auxiliary Quantities

- **P** : Pressure tensor
- \overrightarrow{v} : Fluid three-velocity

Outline

Motivation/Background - CCSNe Numerical Method

> Results Summary/Future Work

Numerical Method Discontinuous Galerkin (DG)

- Discretize computational domain
- Locally approximate solution as polynomial $u(x,t) \approx u_h(x,t) \equiv \sum_{i=1}^N u_h(x_i,t) \ \ell_i(x)$
- Use weak form to evolve in time with SSP-RK methods
- Apply slope- and bound-preservinglimiters at each stage of SSP-RK algorithm

Weak Form (1D) $\partial_t (\sqrt{\gamma} U) + \partial_x (\alpha \sqrt{\gamma} F(U)) = \sqrt{\gamma} S$ (1)

 Multiply (1) by testfunction (Lagrange polynomial)

*Assume three-metric explicitly independent of time

$$-\ell_i(x), \quad i=1,\ldots,N$$

Integrate over element*

 $_{-}~dV=\sqrt{\gamma}\,dx$

 Integration-by-parts on flux term Numerical flux obtained with approximate Riemann solver

 $\int_{K} \frac{\partial \boldsymbol{U}}{\partial t} \ell_{i} \, dV = -\left\{ \left[\alpha \sqrt{\gamma} \, \ell_{i} \, \hat{\boldsymbol{F}} \right]_{x_{L}}^{x_{H}} - \int_{K} \alpha \, \boldsymbol{F} \, \frac{d\ell_{i}}{dx} \, dV - \int_{K} \boldsymbol{S} \, \ell_{i} \, dV \right\}$

$$\int_{K} \frac{\partial u}{\partial t} \ell_{i} \, dV = -\left\{ \left[\alpha \sqrt{\gamma} \, \ell_{i} \, \hat{F} \right]_{x_{L}}^{x_{H}} - \int_{K} \alpha \, F \, \frac{d\ell_{i}}{dx} \, dV - \int_{K} S \, \ell_{i} \, dV \right\}$$

$$\int_{K} \frac{\partial u}{\partial t} \ell_{i}(x) \, dV = \int_{K} \frac{\partial}{\partial t} \left(\sum_{j=1}^{N} u(x_{j}, t) \, \ell_{j}(x) \right) \ell_{i}(x) \, dV$$
$$= \sum_{j=1}^{N} \left[\frac{du(x_{j}, t)}{dt} \int_{K} \ell_{i}(x) \, \ell_{j}(x) \, dV \right]$$
$$= \sum_{j=1}^{N} M_{ij} \frac{du_{j}}{dt} = \mathbf{M} \frac{d\mathbf{u}}{dt}, \quad M_{ij} \equiv \int_{K} \ell_{i}(x) \, \ell_{j}(x) \, dV$$

$$\frac{d\boldsymbol{u}}{dt} = -\boldsymbol{M}^{-1} \left\{ \left[\alpha \sqrt{\gamma} \,\boldsymbol{\ell} \, \hat{F} \right]_{\boldsymbol{x}_L}^{\boldsymbol{x}_H} - \int_K \alpha \, F \, \frac{d\boldsymbol{\ell}}{d\boldsymbol{x}} \, dV - \int_K S \,\boldsymbol{\ell} \, dV \right\}$$

ASTRONUM, July 2019

10/29

Time-Stepping Algorithm Strong-Stability-Preserving Runge-Kutta (SSP-RK) Cockburn & Shu, (2001) J. Sci. Comp., Vol. 16, No. 3

 Convex-combinations of forward-Euler time-steps

$$rac{a}{dt}u_{h}=L\left(u_{h}
ight)$$

- 1. $u_h^{(0)} = u_h^n;$
- 2. For $i = 1, ..., N_s$ compute the intermediate functions:

$$u_{h}^{(i)} = \Lambda \prod_{h} \left(\sum_{j=0}^{i-1} \alpha_{ij} w_{h}^{ij} \right), \quad w_{h}^{ij} = u_{h}^{(j)} + \frac{\beta_{ij}}{\alpha_{ij}} \Delta t^{n} L_{h} \left(u_{h}^{(j)} \right)$$
3.
$$u_{h}^{n+1} = u_{h}^{N_{s}}$$
Slope-limiter

Slope-Limiter

MinMod Limiter

- Higher-order methods can develop unphysical oscillations
- Map solution from nodal to modal representation
- Compare slope in target cell to approximation to derivatives in neighbors via cellaverages

$$u_{h}(x,t) = \sum_{i=1}^{N} u_{h}(x_{i},t) \ \ell_{i}(x) = \sum_{n=0}^{N-1} c_{n}(t) \ P_{n}(x)$$

Parameter with value between 1 and 2 $\tilde{m} = \operatorname{MinMod} \left(\beta_{\mathrm{TVD}} \frac{\overline{u}_{K} - \overline{u}_{K-1}}{\Delta x}, \ m, \ \beta_{\mathrm{TVD}} \frac{\overline{u}_{K+1} - \overline{u}_{K}}{\Delta x} \right),$ $\operatorname{MinMod} (a, b, c) = \begin{cases} 0, & a, b, c \text{ not all same signs} \\ \min(|a|, |b|, |c|), & \text{else} \end{cases}$

Legendre

Polynomials

Troubled-Cell Indicator Fu & Shu, (2017), J. Comp. Phys. 347, 305

- MinMod limiter activates at smooth extrema
- To alleviate, we detect troubled-cells before applying limiter
- Quantify the difference in solutions in neighboring cells

- Extrapolate solution in neighboring cells into target cell
- Compute magnitude of differences between extrapolated solution and cellaverage
- Compare value to parameter set at runtime

Bound-Preserving Limiter Qin et al., (2016), J. Comp. Phys., 315, 323

- Higher-order methods can exceed physical bounds
 - P<0
 - $-\rho < 0$
 - |v| > c
- Cell-average is guaranteed to be physical, but all quadrature points need to be physical
- Damp point-values towards cell-average (allowed because of CFL condition)

- Define "set of admissible states", G
- Leads to two conditions:

- D > 0

AMReX

https://amrex-codes.github.io/amrex/

 Parallel/AMR framework developed primarily from Lawrence
 Berkeley National Laboratory

 Block-Structured AMR

Outline

Motivation/Background - CCSNe Numerical Method - RKDG

Results

Summary/Future Work

Relativistic Kelvin-Helmholtz Instability Radice & Rezzolla, (2012), A&A, 547, A26

- Smooth solution
- Turbulent regions*
- 256 x 512
- Third-order method
- SSP-RK3
- HLL Riemann solver
- Characteristic Limiting
- Run with AMReX

* Assuming ideal EOS

HLL vs. HLLC Riemann Solvers

Primitive Mass-Density

HLLC

Approximates Riemann fan with only two waves

HLL

nX = 256 nY = 512 nNodes = 3 SSP-RK3 Approximates Riemann fan with two waves and one contact wave Mignone & Bodo (2005), MNRAS, 364, 126

2D Riemann Problem Del Zanna & Bucciantini, (2002), A&A, 390, 1177

- Highly relativistic
 - W~7
- Contact waves
- 512 x 512
- Third-order method
- SSP-RK3
- HLL Riemann solver
- Component-wise limiting
- Run with AMReX

Pressure

Characteristic Limiting

Pressure

Characteristic Limiting

Pressure

21/29

2D, Non-Relativistic SASI

- Physically motivated
- Curvilinear coordinates
- Point-mass gravitational potential
- Perturbed with $\ell = 1$ mode instability
- 256x128
- Third-order method
- SSP-RK3

Mass-Density

Run with AMReX

2D, Non-Relativistic SASI

Physically motivated

Pseudocolo Var: PF_D Mass-Density

- Curvilinear coordinates
- Point-mass gravitational potential

Run with AMReX

- 256x128
- Third-order method
- SSP-RK3

GR Standing Accretion Shock

- Physically-motivated
- Curvilinear coordinates
- Stationary background spacetime
- 256 elements
- Third-order method
- HLLC Riemann solver
- Characteristic-limiting
- Run with AMReX

 Evolved over several characteristic SASI development timescales

Outline

Motivation/Background - CCSNe Numerical Method - RKDG Results – KHI/2DRP/SASI/GR-SAS Summary/Future Work

Summary

- Developing Multi-D DG-GR Hydro solver
- Implemented characteristic slope-limiting
- Implemented boundpreserving limiter
- Incorporated AMReX
- Successfully run several difficult test problems

Future Work

- MPI scaling tests
- Implement and test 3D components
- Run 2D and 3D, GR-SASI problem
 - Investigate effects of GRhydro

- Couple with CFA gravity solver (Nick Roberts)
- Couple with neutrino-transport solver (Ran Chu, Zach Elledge)

• AMR

Acknowledgements

- I would like to acknowledge the NSF for helping to fund this research
 - NSF GP-1505933
 - NSF GP-1806692
- I would also like to acknowledge Vanderbilt University for helping to fund this research

Thank you! Questions?

Bonus Material

2.4

Characteristic Decomposition (Proof of concept: Linear case)

$$\begin{aligned} \frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} &= \boldsymbol{0} \\ = \frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{U}} \frac{\partial \boldsymbol{U}}{\partial x} \\ = \frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{R} \boldsymbol{\Lambda} \boldsymbol{R}^{-1} \frac{\partial \boldsymbol{U}}{\partial x} \\ = \frac{\partial \left(\boldsymbol{R}^{-1} \boldsymbol{U}\right)}{\partial t} + \boldsymbol{\Lambda} \frac{\partial \left(\boldsymbol{R}^{-1} \boldsymbol{U}\right)}{\partial x} \\ = \frac{\partial \boldsymbol{W}}{\partial t} + \boldsymbol{\Lambda} \frac{\partial \boldsymbol{W}}{\partial x} = \boldsymbol{0}, \\ \boldsymbol{\Lambda} &\equiv \text{diag} \left[\lambda_1, \lambda_2, \cdots, \lambda_n\right] \\ \text{ASTRONUM, July 2019} \end{aligned}$$

31/29

GR-SAS Initial conditions

- M_PNS = 1.4 Msun
- R_PNS = 40 km
- Mdot = 0.3 Msun/s
- R_shock = 180 km